© ۱۳۹۳
کلیه حقوق این سایت متعلق به ستاد توسعه فناوری نانو می باشد و هر گونه استفاده از مطالب آن بدون ذکر نام منبع ممنوع است.
نانو
nano
پيشوندي به معناي يک بيليونم يا (000،000،000،1/1). در متون فناورينانو، معمولا براي مشخص کردن يک واحد اندازهگيري برابر با 10 به توان منفي 9 متر استفاده ميشود.
میسلها و کاربرد آنها در دارورسانی (3)
منابـــع و مراجــــع
Oerlemans C Fau - Bult, W., et al., Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res, 2010(1573-904X (Electronic)).
Lee, H., et al., In vivo distribution of polymeric nanoparticles at the whole-body, tumor, and cellular levels. Pharmaceutical Research, 2010. 27(11): p. 2343-2355.
Hoang, B., et al., Noninvasive monitoring of the fate of 111In-labeled block copolymer micelles by high resolution and high sensitivity microSPECT/CT imaging. Molecular pharmaceutics, 2009. 6(2): p. 581-592.
Shiraishi, K., et al., Preparation and in vivo imaging of PEG-poly (L-lysine)-based polymeric micelle MRI contrast agents. Journal of Controlled Release, 2009. 136(1): p. 14-20.
Talelli, M., et al., Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: toward a targeted nanomedicine suitable for image-guided drug delivery.Langmuir, 2009. 25(4): p. 2060-2067.
Khemtong, C., et al. Off-resonance saturation magnetic resonance imaging of superparamagnetic polymeric micelles: IEEE.
Lu, J., et al., Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging. Biomaterials, 2009. 30(15): p. 2919-2928.
Torchilin, V.P., M.D. Frank-Kamenetsky, and G.L. Wolf, CT visualization of blood pool in rats by using long-circulating, iodine-containing micelles. Academic radiology, 1999. 6(1): p. 61-65.
Torchilin, V.P., Micellar nanocarriers: pharmaceutical perspectives. Pharmaceutical Research, 2007. 24(1): p. 1-16.
Matsumura, Y. and K. Kataoka, Preclinical and clinical studies of anticancer agent‐incorporating polymer micelles. Cancer science, 2009. 100(4): p. 572-579.
United States National Library of Medicine.overview of clinical trials available via www.clinicaltrials.org. (accessed 01-27-10).
Matsumura, Y., Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Advanced Drug Delivery Reviews, 2008. 60(8): p. 899-914.
Hamaguchi, T., et al., A phase I and pharmacokinetic study of NK105, a paclitaxel-incorporating micellar nanoparticle formulation. British journal of cancer, 2007. 97(2): p. 170-176.
Sutton, D., et al., Functionalized micellar systems for cancer targeted drug delivery. Pharmaceutical Research, 2007. 24(6): p. 1029-1046.
Supratek Pharm Inc.Pipepline available via www.supratek.com. (accessed 10-12-09).
Matsumura, Y., Polymeric micellar delivery systems in oncology. Japanese journal of clinical oncology, 2008. 38(12): p. 793-802.
Wilson, R.H., et al., Phase I and pharmacokinetic study of NC-6004, a new platinum entity of cisplatin-conjugated polymer forming micelles. J Clin Oncol, 2008. 26: p. 2573.
Kim, T.Y., et al., Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clinical cancer research, 2004. 10(11): p. 3708-3716.
Lee, K.S., et al., Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast cancer research and treatment, 2008. 108(2): p. 241-250.
Podoltsev, N.A., et al. Phase II clinical trial of paclitaxel loaded polymeric micelle (GPM) in patients (pts) with advanced pancreatic cancer (APC): Final results.
Saif, M.W., et al. Multicenter phase II trial of Genexol-PM (GPM), a novel Cremophor-free, polymeric micelle formulation of paclitaxel in patients with advanced pancreatic cancer (APC): final results.
Kim, D.W., et al., Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Annals of oncology, 2007. 18(12): p. 2009-2014.
Koizumi, F., et al., Novel SN-38–Incorporating Polymeric Micelles, NK012, Eradicate Vascular Endothelial Growth Factor–Secreting Bulky Tumors. Cancer Research, 2006. 66(20): p. 10048.
Matsumoto, S., et al., Environment-Responsive Block Copolymer Micelles with a Disulfide Cross-Linked Core for Enhanced siRNA Delivery. Biomacromolecules, 2008. 10(1): p. 119-127.
Cavazzana-Calvo, M., et al., Gene Therapy of Human Severe Combined Immunodeficiency (SCID)-X1 Disease. Science, 2000. 288(5466): p. 669-672.
Itaka, K., et al., Polyion complex micelles from plasmid DNA and poly(ethylene glycol)–poly(l-lysine) block copolymer as serum-tolerable polyplex system: physicochemical properties of micelles relevant to gene transfection efficiency. Biomaterials, 2003. 24(24): p. 4495-4506.
Kataoka, K., et al., Spontaneous Formation of Polyion Complex Micelles with Narrow Distribution from Antisense Oligonucleotide and Cationic Block Copolymer in Physiological Saline. Macromolecules, 1996. 29(26): p. 8556-8557.
Katayose, S. and K. Kataoka, Water-Soluble Polyion Complex Associates of DNA and Poly(ethylene glycol)−Poly(l-lysine) Block Copolymer. Bioconjugate Chemistry, 1997. 8(5): p. 702-707.
Katayose, S. and K. Kataoka, Remarkable increase in nuclease resistance of plasmid DNA through supramolecular assembly with poly(ethylene glycol)—poly(L-lysine) block copolymer. Journal of pharmaceutical sciences, 1998. 87(2): p. 160-163.
Oupický, D., et al., DNA delivery systems based on complexes of DNA with synthetic polycations and their copolymers. Journal of Controlled Release, 2000. 65(1–2): p. 149-171.
Osada, K., R.J. Christie, and K. Kataoka, Polymeric micelles from poly(ethylene glycol)–poly(amino acid) block copolymer for drug and gene delivery. J. R. Soc. Interface, 2009. 6(15): p. S325–S339.
مهدی شیردل - ۱۳۹۲/۰۹/۲۱
this is very good.thanks alot