برترین کاربران هفتگی این مقاله

از ۱۳۹۷/۰۶/۳۱ تا ۱۳۹۷/۰۷/۰۶

هیچ کاربری در این بازه زمانی وجود ندارد

آمار مقاله
  • بازدید کل ۵۷,۸۳۸
  • بازدید این ماه ۵۰۱
  • بازدید امروز ۳
آمار آزمون مقاله
  • کل شرکت کنندگان ۸۷۴
  • قبول شدگان ۷۶۳
  • شرکت کنندگان یکتا ۳۴۸
  • میانگین درصد شرکت کنندگان ۸۱
واژه نامه فناوری نانو

نانو

nano

پيشوندي به معناي يک بيليونم يا (000،000،000،1/1). در متون فناوري‌نانو، معمولا براي مشخص کردن يک واحد اندازه‌گيري برابر با 10 به توان منفي 9 متر استفاده مي‌شود.

سطح مقاله

مقدماتی

نویسندگان
کلمات کلیدی
امتیاز کاربران

مقدمه‌ای بر لایه‌های نازک

لایه نازک در واقع لایه ای از مواد است که ضخامت آن در رنج کسری از یک نانومتر تا چند میکرومتر قرار گرفته باشد. اهمیت عمده لایه های نازک در صنایع الکترونیک، میکروالکترونیک و صنایع نوری می باشد که در سال های اخیر با پیشرفت فناوری نانو، رشد قابل ملاحظه ای را در اصلاح خواص سطحی مواد داشته است. خواص لایه های نازک وابسته به ساختار و مورفولوژی آنها طی فرایند رشد و جوانه زنی است.
مفهوم لایه های نازک
به طور کلی لایه به ماده یا موادی گفته می شود که به صورت پوششی بر یک سطح یا ماده می نشینند و باعث ایجاد خواص الکتریکی، فیزیکی و مکانیکی سطحی جدیدی می شود که که خصوصیات سطحی زیر لایه را ارتقاء می‌بخشد.
معمولا در فیزیک حالت جامد، مواد را به صورت توده ای مورد بررسی قرار می دهند. در عموم روش های لایه نشانی، هنگامی که ماده از حالت توده ای به صورت اتم ها، ملکول ها یا یون های مجزا درآیند و روی سطح زیرلایه نشینند، پوششی ایجاد می شود که آنرا لایه می نامند. چگالش ذرات اتمی، ملکولی یا یونی برای تشکیل لایه بر روی زیرلایه توسط فرایندهای فیزیکی و شیمیایی مختلفی صورت می گیرد. شکل 1 شماتیک ساختار لایه و زیرلایه را نشان می‌دهد.

filereader.php?p1=main_ec6ef230f1828039e
شکل 1- شماتیک ساختار لایه و زیرلایه نسبت به هم[1].

معمولا اگر لایه تشکیل شده نازک باشد، خواص فیزیکی جدیدی از خود بروز می دهد که با خواص همان لایه به صورت توده ای متفاوت است که به این ترتیب می توان قابلیت های جدیدی به محصول افزود.
اصولاً لایه ها و پوشش های مختلف از نقطه نظر ضخامت به سه گروه تقسیم می شوندکه عبارتند از:
1. لایه های بسیار نازک با ضخامت کمتر از 50 انگستروم
2. لایه های نازک با ضخامت بین 50 تا 5000 انگستروم
3. لایه های ضخیم با ضخامت بیش از 5000 انگستروم

طبق تعریف بالا، لایه های نازک لایه هایی هستند که ضخامت آنها بین 50 تا5000 انگستروم می باشد. به بیان دیگر لایه های نازک ، لایه های با دقت اتمی طراحی شده ای از انواع مواد اعم از فلزات، عایق ها، نیمه رساناها هستند. لایه های نازک را می توان در دسته پوشش های نانو ساختار دسته بندی کرد. همچنین کاربرد عمده این لایه های نازک در اصلاح خواص سطح جامدات است.
لایه های نازک و بسیار نازک، از دو ویژگی مهم برخوردار هستند. اولین ویژگی، ضخامت زیرمیکرونی آن است که هر چه به اندازه نانو نزدیک تر شود، ویژگی های متفاوت‌تری را برای لایه به وجود می آورد. دومین ویژگی آن است که لایه ها می توانند سطوح فوق العاده بزرگی نسبت به ضخامت داشته باشند. این دو ویژگی باعث پدید آمدن خواص متفاوت‌تر، و کاربردی می شوند که در قسمت خواص لایه های نازک به آن پرداخته خواهد شد [1-3].

اهمیت لایه های نازک
در سال های اخیر، علم لایه های نازک در میان سایر علوم رشد قابل ملاحظه ای داشته و حجم وسیعی از تحقیقات را به خود اختصاص داده است. بی شک رشد چشمگیر ارتباطات، پردازش اطلاعات، ذخیره سازی، صفحه های نمایش، صنایع تزئینی، ابزارآلات نوری، مواد سخت و عایق ها نتیجه تولید لایه های نازک براساس فناوری های نوین می باشد. در ساخت لایه های نازک نیز در سال های اخیر تحولات وسیعی صورت گرفته است که خود ناشی از پیشرفت در فناوری خلاء، تولید میکروسکوپ های الکترونی و ساخت وسایل دقیق و پیچیده ی شناسایی مواد است. همچنین باز شدن مباحثی نظیر میکروالکترونیک، اپتیک و نانوتکنولوژی مدیون اهمیت پوشش های لایه نازک می باشد. از نقطه نظر تاریخی در ابتدا تکنولوژی لایه نازک در صنایع مدارهای مجتمع(شکل 2)استفاده شد. در ادامه طی 40 سال اخیر، نیاز صنایع به ابزارهای کوچکتر و سریعتر، تکنولوژی و فیزیک لایه های نازک را جهت رسیدن به این هدف بهبود بخشید.

filereader.php?p1=main_1d665b9b1467944c1
شکل 2-تصویر مقطع عرضی مدل یک مدار مجتمع(IC) سه بعدی[7].

لایه های نازک با ضخامت زیر میکرونی، با خواصی ناشی از همان دو ویژگی اصلی آنها که شامل نازک بودن و بزرگی فوق العاده نسبت سطح به حجم است، کاربردهای فراوانی در فناوری های نوین یافته اند. برخی خصوصیاتی که در اثر نازک بودن سطح به وجود می آید شامل افزایش مقاومت ویژه، ایجاد پدیده تداخل نور، پدیده تونل زنی، مغناطیس شدگی سطحی، تغییر دمای بحرانی ابررساناها می باشد. همچنین برخی خصوصیاتی که از بزرگی سطح لایه های نازک ناشی می شود شامل پدیده جذب سطحی فیزیکی و پدیده جذب سطحی شیمیایی، پدیده پخش و فعالسازی می باشد.

با توجه به عملکرد و خواص لایه های نازک، می توان از آنها جهت بهبود تکنولوژی هایی نظیر سلولهای خورشیدی، سنسورها، کاربردهای نوری، مهندسی الکترونیک و فروالکترونیک نیز استفاده نمود. امروزه کاربرد لایه نشانی در صنایع، موضوع توسعه یافته ای است. به گونه ای که بخش بزرگی از زندگی مدرن را مدیون توسعه صنعت لایه نشانی می دانند [3و4].

تاریخچه لایه های نازک
فناوری لایه های نازک قدمتی چندهزار ساله دارد. این تکنولوژی، به طور همزمان، هم یکی از قدیمی ترین هنرها و هم یکی از جدیدترین علوم می باشد. احتمالاً مصریان اولین کسانی بودند که از هنر زرکوبی و طلاکاری برای تزیین و مقاوم سازی سطوح استفاده می کرده اند. در حدود چهار هزار سال پیش، هنر چکش کاری طلا با تولید ورقه های بسیار نازک زیبا و پایدار در برابر فرایندهای شیمیایی کاربرد داشته است. همچنین در گذشته، سالیان متمادی لایه نشانی جیوه بر روی قطعات مسی انجام می گرفته است. صرفنظر از امکان استفاده لایه های نازک، فناوری تولید لایه نازک از حدود 300 سال پیش آغاز شد. اولین روشی که منجر به تولید لایه نازک فلزی شد، در سال 1838 به روش الکترولیز بود. در قرن 19 میلادی لایه نازک مایع از دیدگاه اپتیکی بسیار مورد توجه بوده است. رفته رفته با پیشرفت تکنولوژی، در قرن 20 میلادی تولید لایه نازک جامد رشد کرد. در اوایل قرن 20 میلادی، با رشد تکنولوژی میکروالکترونیک، ساخت لایه های نازک تر از 1میکرومتر(زیرمیکرونی) اهمیت ویژه ای بدست آورد و در اواخر قرن 20 با ظهور و پیشرفت مباحث نانومتری و پیدایش روش های شناسایی نظیرXPS، تولید لایه ی نازک نانومتری (زیر 100نانومتر) پیشرفت چشمگیری پیدا کرد[3و5-7].

فیزیک لایه های نازک
فرایند رشد لایه های نازک در حالت لایه نشانی شبیه توده مواد، بصورت صفحه کامل نیست. وقتی با حجم ماده مقایسه می شود، خواص فیزیکی لایه نازک روی زیرلایه، قویاً ممکن است متفاوت باشد که وابسته به ساختار و مورفولوژی آن است. ویژگیهایی نظیر اندازه دانه، شکل، جهت و ... به مقدار زیادی مرتبط با مراحل جوانه زنی و رشد تعیین می شود و می تواند متاثر از شرایط لایه نشانی باشد[7و8]. فرایند رشد اتمی به این صورت است که در ابتدا یک ذره از فاز بخار، کندانس می شود که ممکن است بلافاصله تبخیر مجدد شود و یا در میان سطح نفوذ کند. فرایند نفوذ ممکن است به جذب در مکان های خاصی بیانجامد. طی فرایند رشد، برای بدست آمدن لایه ای با سطح صاف، به موبیلیته سطحی کافی جزء نفوذ کننده و دمای بالا نیاز می باشد.
برای تشکیل لایه، ماده اولیه سه مرحله اساسی را طی می کند. در مرحله اول، ماده اولیه به ذره های اتمی، ملکولی یا یونی تبدیل می شود. سپس در مرحله دوم، فاصله بین منبع تا زیرلایه را طی می کند و در مرحله آخر، چگالش ذرات بر روی زیرلایه و تشکیل یک لایه جامد صورت می گیرد. چگالش لایه های نازک به شکل های مختلفی رخ می دهد که هر شکل آن به عوامل متعددی وابسته است که از آن دسته می توان به برهم کنش بین اتم های لایه ی در حال رشد و اتم های لایه و زیرلایه اشاره گرد. بطور عمده سه نوع رشد لایه نازک مشاهده گردیده است:

1. رشد لایه به لایه
2. رشد جزیره ای
3. رشد لایه ای-جزیره ای

filereader.php?p1=main_7bc3ca68769437ce9
شکل 3-شماتیک انواع فرایند رشد[7].

شکل 3 شماتیک سه فرآیند را به خوبی نشان می‌دهد. فرایند رشد لایه به لایه زمانی اتفاق می افتد که نیروی برهم کنش بین اتم های زیرلایه و لایه، قویتر از نیروی برهم کنش بین فقط اتم های لایه باشد. ابتدا یک لایه از اتم ها بر روی زیرلایه ی جامد شکل می گیرد، سپس لایه دوم روی لایه اول تشکیل می گردد. لایه جدید، تنها زمانی شروع به رشد می کند که لایه قبلی کامل شده باشد. این نوع رشد، به رشد فرانک وندرمرو نیز معروف است. اما چنانچه برهم کنش بین اتم های لایه بیشتر از برهم کنش بین اتم های لایه و زیرلایه باشد، لایه ها بصورت جزیره ای رشد خواهند کرد. نام دیگر این نوع رشد، رشد ولمر-وبر می باشد. پیوند اتم ها به یکدیگر در حالت رشد جزیره ای قوی تر از پیوند آنها به زیرلایه است. رشد جزیره ای-لایه ای، که حالتی بین رشد لایه به لایه و رشد جزیره ای می باشد، یک یا چند تک لایه تشکیل می شود و سپس جزایر تکمیل می گردد. نام دیگر فرایند رشد، استرانسکی-کرستانف می باشد. در این حالت از رشد، بین لایه ی پوشش داده شده و زیرلایه ممکن است یک شبکه نامطابق ایجاد شود. اندازه دانه لایه نازکی که روی زیرلایه تشکیل می شود، بستگی به سرعت و دمای لایه نشانی آن دارد[3و4].

کیفیت لایه های نازک
با توجه به نوع کاربرد لایه های نازک می توان کیفیت ساخت آنها را تغییر داد. از عواملی که در کیفیت لایه نازک موثرند می توان به سرعت لایه نشانی، دمای زیرلایه، نوع خلاء، ساختار زیرلایه و تطابق آن با لایه اشاره نمود. در مورد سطح مشترک لایه و زیرلایه، بایستی مرز مشترک آن عاری از آلودگی و ناخالصی باشد و ناصافی آن به حداقل ممکن خود برسد تا اتصال در سطح مشترک به خوبی صورت گیرد. در مورد ساختار نیز، نظم اتمی لایه و زیرلایه می تواند نقش مهمی در ویژگی های لایه نازک داشته باشد. همچنین خواص شیمیایی به دلیل ایجاد واکنش شیمیایی که ممکن است بین اتم های لایه و زیرلایه صورت بگیرد، بایستی به دقت مورد بررسی قرار گیرد. در حیطه خواص حرارتی، نزدیکی ضریب انبساط حرارتی لایه و زیرلایه موضوع حائز اهمیتی است تا لایه ایجاد شده بر روی زیرلایه چروکیده یا پاره نشود. همچنین در برابر شوک های حرارتی بایستی مقاوم باشند و در مورد خاصیت مکانیکی، لایه و زیرلایه بایستی از استقامت مکانیکی خوبی برخوردار باشند[3].

بحث و نتیجه گیری
پوشش ها براساس ضخامت آنها در سه گروه، زیر 50آنگستروم، بالای 5000آنگستروم و بین این دو مقدار دسته بندی می شوند که لایه های نازک را در ضخامت بین 50 و 5000آنگستروم قرار می دهند. تولید این لایه ها از حدود 300 سال پیش آغاز شده است اما طی چند سال اخیر با پیشرفت فناوری نانو، شمار زیادی از تحقیقات را به خود اختصاص داده است. اهمیت لایه های نازک علاوه بر خواص پوششی آنها، شامل خواص الکتریکی، نوری و... نیز می باشد که از دو ویژگی اساسی لایه های نازک که همان نازک بودن و بزرگی فوق العاده نسبت سطح به حجم است، حاصل می گردد و باعث پیشرفت در صنایع میکروالکترونیک، فروالکترونیک، اپتیک و ... گشته است. خواص فیزیکی لایه های نازک عموماً متفاوت از توده ماده است و با توجه به شرایط لایه نشانی و ساختار لایه تشکیل شده، می تواند تغییر کند. سرعت لایه نشانی، دمای زیرلایه، نوع خلاء، ساختار زیرلایه و تطابق آن با لایه از جمله عوامل تاثیر گذار بر کیفیت لایه نازک می باشند. اتم ها در فاز بخار، در صورت نفوذ در مکانهای خاصی روی سطح ماده، کندانس شده و موجب رشد لایه می گردد که براساس همین مکانهای خاص سطحی و میزان نیروی پیوند بین اتم های لایه و زیرلایه، فرایند رشد لایه نازک تعیین می شود.

در فیلم زیر مقدمه کوتاهی در رابطه با نانو پوشش ها ارائه شده است.




منابـــع و مراجــــع

[1] K. N. Chopra & A. K. Maini, "Thin Film and Their Applications in Military and Civil Sectors" Defence Research and Development Organisation, 2010.

[2] http://www.offthegrid.com/offthegridliving/wpcontent/uploads/2008/11/sharp_solar_thin_film.jpg

[3] ع. رازقی زاده، "فیزیک لایه های نازک "، دانشگاه پیام نور:تهران، 1388.

[4] Y.R. Reddy,“An Introduction to Thin Films”,2010.

[5] A. Wagendristel & Y. Wang, “An Introduction of Physics and Technology of Thin Films”, , 1994.

[6] R. W. Berry, P. M. Hall & M.T. Harris “Thin film Technology”, Van Nostrand Company, 1968.

[7] M. Ohring, “Yhe Materials Science of thin Films”, Academic press. 1992.

[8] Thin film processes: Elsevier Publishing, 1991.

نظرات و سوالات

نظرات

1 0

مهسا حیدری - ‏۱۳۹۵/۰۳/۰۳

خوب بود.ممنون

2 0

سیمین محمودپور - ‏۱۳۹۳/۰۱/۲۴

در کدام مورفولوژی لایه نازک، میزان رسانایی کمتر می باشد؟

لایه نازک منسجم

لایه نازک گرانوله

لایه نازک متخلخل

رسانایی لایه نازک به مورفولوژی آن ارتباطی ندارد.

پاسخ تشریحی



رسانایی لایه نازک شدیدا به مورفولوژی آن وابسته است و هر چه این مورفولوژی حالت منسجم و پیوسته تری داشته باشد عبور الکترون ها و در نتیجه رسانایی بیشتر خواهد بود.



در این سوال طبق توضیحات و همچنین طبق مقاله جواب صحیح گزینه ی اول است که گزینه ی دوم به اشتباه پذیرفته شده .

پاسخ مسئول سایت :
با سلام
در متن سوال رسانندگی کمتر مد نظر است که برطبق متن مقاله:
خواص الکتریکی لایه های نازک شدیدا به مورفولوژی آن بستگی دارد. در این میان، بهترین رسانایی مربوط به لایه های نازک منسجم و کمترین میزان رسانایی درلایه های با ذرات جدا از هم می باشد.

موفق باشید.
0 0

فاطمه ناصری

بسیار متشکرم از سایت خیلی خوبتون

0 0

علی معلی

عالی بود